Category Archives: cardan coupling

China best SWC Series Cardan Shaft Coupling for Machine

Product Description

Hot Sale Standard Telescopic Welded Cardan Shaft

SWC-BH type cardan shaft coupling is a kind of the most commonly used with the characteristics of its structure can not in the same axis or axis angle or larger axial movement of 2 large equiangular continuous rotary speed, and reliably transfer torque and motion. It can be widely used in metallurgy, lifting, transportation, mining, petroleum, shipbuilding, coal, rubber, paper machinery and other heavy machinery industry machinery shaft in the transmission torque.

♦Basic Parameter And Main Dimension

 Model   Tn
kN • m

T.
kN • m

p
(.)
LS
mm
Lmin                           Size
                           mm
I kg. m2       m
      kg
Di
js11
d2
H7
Da Lm n-d k t b
h9
g Lmin 100mm Lmin 100mm
SWC58BH 58 0.15 0.075 ≤22 35 325 47 30 38 35 4-5 3.5 1.5 2.2
SWC65BH 65 0.25 0.125 ≤22 40 360 52 35 42 46 4-6 4.5 1.7 3.0
SWC75BH 75 0.50 0.25 ≤22 40 395 62 42 50 58 6-6 5.5 2.0 5.0
SWC90BH 90 1.0 0.50 ≤22 45 435 74.5 47 54 58 4-8 6.0 2.5 6.6
SWC100BH 100 1.5 0.75 ≤25 55 390 84 57 60 58 6-9 7 2.5 0.0044 0.00019 6.1 0.35
SWC120BH 120 2.5 1.25 ≤25 80 485 102 75 70 68 8-11 8 2.5 0.5719 0.00044 10.8 0.55
SWC150BH 150 5 2.5 ≤25 80 590 13.0 90 89 80 8-13 10 3.0 0.0423 0.00157 24.5 0.85
SWC160BH 160 10 5 ≤25 80 660 137 100 95 110 8-15 15 3.0 20 12 0.1450 0.0060 68 1.72
SWC180BH 180 20 10 ≤25 100 810 155 105 114 130 8-17 17 5.0 24 14 0.1750 0.0070 70 2.8
SWC200BH 200 32 16 ≤15 110 860 170 120 127 135 8-17 19 5.0 28 16 0.3100 0.0130 86 3.6
SWC225BH 225 40 20 ≤15 140 920 196 135 152 120 8-17 20 5.0 32 9.0 0.5380 0.5714 122 4.9
SWC250BH 250 63 31.5 ≤15 140 1035 218 150 168 140 8-19 25 6.0 40 12.5 0.9660 0.5717 172 5.3
SWC285BH 285 90 45 ≤15 140 1190 245 170 194 160 8-21 27 7.0 40 15.0 2.0110 0.571 263 6.3
SWC315BH 315 125 63 ≤15 140 1315 280 185 219 180 10-23 32 8.0 40 15.0 3.6050 0.571 382 8.0
SWC350BH 350 180 90 ≤15 150 1410 310 210 267 194 10-23 35 8.0 50 16.0 7.571 0.2219 582 15.0
SWC390BH 390 250 125 ≤15 170 1590 345 235 267 215 10-25 40 8.0 70 18.0 12.164 0.2219 738 15.0
SWC440BH 440 355 180 ≤15 190 1875 390 255 325 260 16-28 42 10 80 20.0 21.420 0.4744 1190 21.7
SWC490BH 490 500 250 ≤15 190 1985 435 275 325 270 16-31 47 12 90 22.5 32.860 0.4744 1452 21.7
SWC550BH 550 710 355 ≤15 240 2300 492 320 426 305 16-31 50 12 100 22.5 68.920 1.3570 2380 34

·Marking Example:
  SWC 350BH Standard telescopic welded cardan shaft,Length=1610mm
  SWC 350BH*1610cardan shaft JB5513-91
·Note:
1.Tf-Torque allowed by fatigue strength under varible load

2.Lmin-Minimum length after shortening
3.L-Installation length as required

♦Product Show

♦Other Products List

Transmission Machinery 
Parts Name
Model
Universal Coupling WS,WSD,WSP
Cardan Shaft SWC,SWP,SWZ
Tooth Coupling CL,CLZ,GCLD,GIICL,
GICL,NGCL,GGCL,GCLK
Disc Coupling JMI,JMIJ,JMII,JMIIJ
High Flexible Coupling LM
Chain Coupling GL
Jaw Coupling LT
Grid Coupling JS

♦Our Company
HangZhou CHINAMFG Machinery Manufacturing Co., Ltd. is a technology-based company specializing in the design and manufacture of basic transmission parts and various auxiliary non-standard equipment accessories. The products are mainly used in metallurgy, electric power, mining, chemical industry, petroleum, papermaking, shipbuilding, heavy industry, etc.

In many industries, it has provided strong technical and equipment support for many companies around the world. At present, the products are also exported to Russia, Italy, Spain, Brazil, Ukraine, Turkey, Australia, Singapore, Vietnam, Indonesia, Malaysia, Sri Lanka and other countries and regions.

Welcome to customize products from our factory and please provide your design drawings or contact us if you need other requirements.

♦Our Services
1.Design Services
Our design team has experience in cardan shaft relating to product design and development. If you have any needs for your new product or wish to make further improvements, we are here to offer our support.

2.Product Services
raw materials → Cutting → Forging →Rough machining →Shot blasting →Heat treatment →Testing →Fashioning →Cleaning→ Assembly→Packing→Shipping

3.Samples Procedure
We could develop the sample according to your requirement and amend the sample constantly to meet your need.

4.Research & Development
We usually research the new needs of the market and develop the new model when there is new cars in the market.

5.Quality Control
Every step should be special test by Professional Staff according to the standard of ISO9001 and TS16949.

FAQ
Q 1: Are you trading company or manufacturer?
A: We are a professional manufacturer specializing in manufacturing
various series of couplings.

Q 2:Can you do OEM?
Yes, we can. We can do OEM & ODM for all the customers with customized artworks of PDF or AI format.

Q 3:How long is your delivery time?
Generally it is 20-30 days if the goods are not in stock. It is according to quantity.

Q 4: Do you provide samples ? Is it free or extra ?
Yes, we could offer the sample but not for free.Actually we have a very good price principle, when you make the bulk order then cost of sample will be deducted.

Q 5: How long is your warranty?
A: Our Warranty is 12 month under normal circumstance.

Q 6: What is the MOQ?
A:Usually our MOQ is 1pcs.

Q 7: Do you have inspection procedures for coupling ?
A:100% self-inspection before packing.

Q 8: Can I have a visit to your factory before the order?
A: Sure,welcome to visit our factory.

Q 9: What’s your payment?
A:1) T/T. 2) L/C 

Contact Us

Add: No.1 HangZhou Road,Chengnan park,HangZhou City,ZheJiang Province,China
  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

cardan coupling

Impact of Size and Design on Cardan Coupling Performance and Durability

The size and design of a cardan coupling play a crucial role in determining its performance and durability across various applications:

  • Load Capacity: Larger and more robust cardan couplings are generally designed to handle higher torque and load capacities, making them suitable for heavy-duty applications.
  • Flexibility: The design of the coupling’s universal joint and its flexibility affect how well it can accommodate angular misalignment while maintaining smooth power transmission.
  • Alignment Tolerance: Well-designed cardan couplings have better alignment tolerances, allowing them to operate efficiently even in conditions with slight misalignment.
  • Materials: The choice of materials impacts the coupling’s strength, corrosion resistance, and overall durability, especially in harsh environments.
  • Bearing Arrangement: The bearing arrangement within the coupling affects its ability to withstand both axial and radial forces, which is crucial for stability.
  • Sealing: Effective sealing mechanisms prevent contaminants from entering the coupling, ensuring smooth operation and preventing premature wear.
  • Dynamic Balance: Proper dynamic balance reduces vibrations and stress on connected components, contributing to extended coupling life.
  • Lubrication: The design should allow for adequate lubrication, which is essential for reducing friction and wear.
  • Installation and Maintenance: A well-designed coupling should be easy to install and maintain, with accessible lubrication points and inspection areas.

Ultimately, the size and design of a cardan coupling should be carefully matched to the specific requirements of the application to ensure optimal performance, reliability, and longevity.

cardan coupling

Challenges and Alignment of Cardan Couplings

Cardan couplings, while capable of accommodating angular misalignment, can pose certain challenges related to alignment. Here’s an overview of these challenges and how they can be addressed:

1. Angular Misalignment Limit: Cardan couplings have a limit to the amount of angular misalignment they can accommodate without causing excessive wear and vibration. It’s essential to stay within the manufacturer’s specified misalignment range.

2. Precision Assembly: Assembling a cardan coupling requires precision to ensure that the yokes and spider are aligned correctly. Misaligned assembly can lead to premature wear and increased vibrations.

3. Balancing and Vibration: Cardan couplings can introduce imbalances due to their design. Imbalances can result in vibration and reduce the overall efficiency of the system.

4. Lubrication: Adequate lubrication is crucial to minimize friction and wear in the bearings of the spider. Poor lubrication can lead to increased heat generation and accelerated wear.

5. Maintenance: Regular maintenance is required to monitor the condition of the coupling, including checking for wear, misalignment, and any signs of damage.

6. Torque Fluctuation: In applications with significant angular misalignment, cardan couplings may experience torque fluctuations due to the changing angles of the shafts.

To address these challenges:

– Follow the manufacturer’s guidelines for installation, alignment, and maintenance.

– Use precision tools and techniques during assembly to ensure proper alignment.

– Balance the rotating components to minimize vibration.

– Maintain proper lubrication to reduce friction and wear.

– Periodically inspect the coupling for wear, misalignment, and signs of damage.

– Consider using flexible couplings with higher misalignment capabilities for applications with extreme misalignment requirements.

Proper alignment, maintenance, and adherence to manufacturer recommendations can help maximize the efficiency and longevity of cardan couplings in mechanical systems.

cardan coupling

Are there different types of cardan couplings for various applications?

Yes, there are different types of cardan couplings designed to suit various applications and requirements:

  • Single Universal Joint: This is the most common type of cardan coupling, consisting of two yokes connected by a cross-shaped center piece. It is suitable for applications where angular misalignment compensation is needed, but the shafts are not too far apart.
  • Double Cardan Joint: Also known as a double U-joint or CV joint, this type consists of two universal joints connected by an intermediate shaft. It is used when higher angles of misalignment need to be accommodated or when a constant velocity transmission is required.
  • Disc Type Coupling: This type uses flexible discs or plates to transmit torque and compensate for misalignment. It is often used in applications with limited space and moderate torque requirements.
  • Block Type Coupling: Block type cardan couplings use solid blocks or spheres to transmit torque. They are suitable for heavy-duty applications and can handle higher torque loads.
  • Floating Shaft Coupling: This design involves two shafts connected by a third floating shaft, which allows for even higher angles of misalignment and smoother torque transmission.
  • Needle Bearing Universal Joint: In this type, needle bearings are used to reduce friction and improve efficiency. It is often used in precision applications where low friction and high efficiency are crucial.

The choice of cardan coupling type depends on factors such as the amount of misalignment, torque requirements, available space, and the need for constant velocity transmission. Selecting the right type ensures optimal performance and longevity in various mechanical systems.

China best SWC Series Cardan Shaft Coupling for Machine  China best SWC Series Cardan Shaft Coupling for Machine
editor by CX 2024-05-09

China manufacturer High Quality Custom Made Short Telescopic Cardan Shaft Universal Coupling (SWP-C Type)

Product Description

High Quality Custom Made Short Telescopic Cardan Shaft Universal Coupling (SWP-C Type)

Description:
The SWP-C short non bending universal joint coupling is a universal joint designed specifically for short distance applications that do not require length compensation. It is a non flexible coupling, which means it does not allow any movement between the 2 connected shafts. This makes it very suitable for applications where accuracy is important, such as machine tools. The SWP-C short flexible universal joint coupling consists of 3 magnetic yokes, which are connected by 2 cross joints. The yoke is made of high-strength steel, and the cross joint is made of high-quality bearings. This material combination ensures that the coupling is sturdy and durable, and can withstand the high loads and stresses often encountered in industrial applications. SWP-C short type flexible universal joint couplings are available in various sizes to adapt to different shaft diameters. It also offers multiple options, such as different yoke styles and different types of bearings. This makes it possible to find perfect coupling for any application.

SWP-C short type flexible universal coupling application:
The following are some applications where SWP-C short type flexible universal joint couplings can be used:
(1) Machine tool: SWP-C short flexible universal joint coupling can be used to connect the motor to the spindle, ensuring that the spindle rotates at precise speed. This is crucial for applications where accuracy is crucial, such as in CNC machining.
(2) Conveyor: SWP-C short type flexible universal joint coupling can be used to connect the drive shaft to the conveyor belt, ensuring that the conveyor belt moves at a constant speed. This is important for applications where conveyor belts need to move at a consistent rate, such as in food processing or packaging.
(3) Elevator: SWP-C short type flexible universal joint coupling can be used to connect the motor to the elevator cable, ensuring smooth and safe operation of the elevator. This is crucial for passenger safety and the smooth operation of the elevator.
(4) Crane: SWP-C short type flexible universal joint coupling can be used to connect the crane to the boom, ensuring smooth and safe lifting of the load. This is important for the safety of both the operator and the load.
(5) Wind turbine: SWP-C short type flexible universal joint coupling can be used to connect the generator to the turbine shaft, ensuring that the generator generates electricity at a constant rate. This is crucial for the effective operation of wind turbines.
The SWP-C short non bending universal joint coupling is a universal and reliable coupling that can be used in various applications. If you are looking for a coupling that can handle high loads and stresses, and provide accurate and stable power transmission, then SWP-C coupling is a good choice.

Packing & shipping:
1 Prevent from damage.
2. As customers’ requirements, in perfect condition.
3. Delivery : As per contract delivery on time
4. Shipping : As per client request. We can accept CIF, Door to Door etc. or client authorized agent we supply all the necessary assistant.

FAQ:
Q 1: Are you a trading company or a manufacturer?
A: We are a professional manufacturer specializing in manufacturing various series of couplings.

Q 2:Can you do OEM?
Yes, we can. We can do OEM & ODM for all the customers with customized artworks in PDF or AI format.

Q 3:How long is your delivery time?
Generally, it is 20-30 days if the goods are not in stock. It is according to quantity.

Q 4: How long is your warranty?
A: Our Warranty is 12 months under normal circumstances.

Q 5: Do you have inspection procedures for coupling?
A:100% self-inspection before packing.

Q 6: Can I have a visit to your factory before the order?
A: Sure, welcome to visit our factory. /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

cardan coupling

Recent Technological Advancements in Cardan Coupling Design

In recent years, there have been notable advancements and innovations in the design of cardan couplings:

  • Material Enhancements: Advances in materials science have led to the development of high-strength and lightweight materials that can improve the performance and durability of cardan couplings.
  • Sealing Technology: Improved sealing mechanisms and materials help prevent contamination and enhance the lifespan of cardan couplings.
  • Computer-Aided Design (CAD): CAD software allows for more precise and optimized design of cardan couplings, leading to better performance and reduced stress concentrations.
  • Finite Element Analysis (FEA): FEA techniques enable engineers to simulate the behavior of cardan couplings under various loads and conditions, aiding in design optimization.
  • Lubrication Systems: Innovations in lubrication systems ensure efficient and consistent lubrication, reducing wear and enhancing coupling longevity.
  • Monitoring and Diagnostics: Integration of sensors and monitoring systems enables real-time data collection for performance analysis, predictive maintenance, and early detection of issues.
  • Customization: Advanced manufacturing techniques allow for more customization, making it possible to design cardan couplings tailored to specific applications.

These advancements contribute to the overall efficiency, reliability, and performance of cardan couplings, making them more suitable for a wide range of applications.

cardan coupling

Common Industries and Applications of Cardan Couplings

Cardan couplings, also known as universal joints or u-joints, are widely used in various industries and applications that require torque transmission and flexibility in shaft connections. Some common examples include:

  • Automotive Industry: Cardan couplings are used in driveshafts to transmit power from the engine to the wheels while allowing for variable angles and misalignment caused by suspension movement.
  • Industrial Machinery: They are used in heavy machinery such as mining equipment, cranes, and manufacturing machinery to transmit torque between non-aligned shafts.
  • Agricultural Machinery: Tractors and other agricultural equipment utilize cardan couplings in drivelines to accommodate varying angles and lengths.
  • Marine Applications: Cardan couplings are used in marine propulsion systems to transmit torque between the engine and the propeller shaft, even when the shafts are at different angles.
  • Aerospace Industry: They are employed in aerospace applications such as aircraft control systems and helicopter rotor drives to accommodate movements and misalignments.
  • Railway Systems: Cardan couplings are used in railway drivelines to transmit torque between cars and locomotives while allowing for movement and misalignment.
  • Energy Sector: They find applications in power generation systems, including wind turbines, where they accommodate misalignments caused by dynamic loads.
  • Pumps and Compressors: Cardan couplings are used in pumps and compressors to transmit power while compensating for misalignment and vibration.

These examples demonstrate the versatility of cardan couplings in various industries where torque transmission, flexibility, and angular misalignment compensation are essential.

cardan coupling

Factors to Consider When Selecting a Cardan Coupling for Specific Applications

Choosing the right cardan coupling for a specific application requires careful consideration of various factors:

  • Torque and Power Transmission: Determine the required torque and power capacity of the coupling to ensure it can handle the intended load without exceeding its limits.
  • Angular Misalignment: Assess the level of angular misalignment that might occur between the connected shafts and choose a coupling that can accommodate it without causing excessive wear or vibration.
  • Operating Speed: Consider the rotational speed of the shafts to ensure that the coupling’s design can handle the desired speed without causing issues like resonance or fatigue.
  • Environmental Conditions: Evaluate the operating environment, including factors like temperature, humidity, and exposure to contaminants, to select a coupling made from materials that can withstand these conditions.
  • Shaft Sizes and Types: Measure the diameter and type of shafts that need to be connected and choose a coupling with compatible dimensions and attachment methods.
  • Space Constraints: Consider the available space for the coupling within the machinery and select a compact design that fits without causing interference.
  • Maintenance Requirements: Evaluate the maintenance practices and frequency that will be feasible for your application and choose a coupling that aligns with those requirements.
  • Cost and Budget: Factor in the cost of the coupling and its potential impact on your budget while ensuring that the chosen coupling meets your performance needs.
  • Shock and Vibration: Determine if the application involves high levels of shock or vibration and select a coupling that can absorb or mitigate these forces to prevent premature failure.
  • Life Cycle and Reliability: Consider the expected lifespan of the machinery and choose a coupling that offers the desired level of durability and reliability.

By carefully considering these factors, you can select the most suitable cardan coupling for your specific application, ensuring optimal performance and longevity.

China manufacturer High Quality Custom Made Short Telescopic Cardan Shaft Universal Coupling (SWP-C Type)  China manufacturer High Quality Custom Made Short Telescopic Cardan Shaft Universal Coupling (SWP-C Type)
editor by CX 2024-05-08

China Professional 19-32 Woodon China Encoder Couplings Cardan Universal Coupling Hot SWC-I120b-295, SWC-I100dh-304+30, SWC-I120b-295

Product Description

Product     Name Cardan Shaft
Product     Model SWC-I75A-335+40
Main          Material 35CrMo or 45# Steel
Nominal  Torque 500  N.M
Normal      Length 335 mm
Length       Compensation 40 mm

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

cardan coupling

Phasing in Cardan Couplings and Its Impact on Performance

The concept of phasing in cardan couplings refers to the alignment of the universal joints’ yokes or flanges on the input and output shafts. Proper phasing is essential to minimize angular misalignment and maintain smooth rotational motion. When the yokes of the universal joints are not aligned correctly, it can result in uneven torque transmission, increased wear, and vibrations.

Phasing affects the performance of cardan couplings in several ways:

  • Uniform Torque Transmission: Proper phasing ensures that torque is evenly distributed between the input and output shafts, reducing the risk of overloading individual universal joints.
  • Reduced Vibrations: Correctly phased universal joints minimize angular misalignment, which helps reduce vibrations and noise in the machinery system.
  • Extended Lifespan: Improved phasing leads to reduced wear and stress on the universal joint components, extending the overall lifespan of the coupling.
  • Efficient Power Transmission: Proper phasing contributes to efficient power transmission by minimizing energy losses due to misalignment.

To achieve proper phasing, manufacturers often provide guidelines or marks on the coupling components to ensure accurate alignment. It’s essential to follow these guidelines during installation and any maintenance or adjustments to maintain optimal performance and reliability of the cardan coupling.

cardan coupling

Challenges and Alignment of Cardan Couplings

Cardan couplings, while capable of accommodating angular misalignment, can pose certain challenges related to alignment. Here’s an overview of these challenges and how they can be addressed:

1. Angular Misalignment Limit: Cardan couplings have a limit to the amount of angular misalignment they can accommodate without causing excessive wear and vibration. It’s essential to stay within the manufacturer’s specified misalignment range.

2. Precision Assembly: Assembling a cardan coupling requires precision to ensure that the yokes and spider are aligned correctly. Misaligned assembly can lead to premature wear and increased vibrations.

3. Balancing and Vibration: Cardan couplings can introduce imbalances due to their design. Imbalances can result in vibration and reduce the overall efficiency of the system.

4. Lubrication: Adequate lubrication is crucial to minimize friction and wear in the bearings of the spider. Poor lubrication can lead to increased heat generation and accelerated wear.

5. Maintenance: Regular maintenance is required to monitor the condition of the coupling, including checking for wear, misalignment, and any signs of damage.

6. Torque Fluctuation: In applications with significant angular misalignment, cardan couplings may experience torque fluctuations due to the changing angles of the shafts.

To address these challenges:

– Follow the manufacturer’s guidelines for installation, alignment, and maintenance.

– Use precision tools and techniques during assembly to ensure proper alignment.

– Balance the rotating components to minimize vibration.

– Maintain proper lubrication to reduce friction and wear.

– Periodically inspect the coupling for wear, misalignment, and signs of damage.

– Consider using flexible couplings with higher misalignment capabilities for applications with extreme misalignment requirements.

Proper alignment, maintenance, and adherence to manufacturer recommendations can help maximize the efficiency and longevity of cardan couplings in mechanical systems.

cardan coupling

Are there different types of cardan couplings for various applications?

Yes, there are different types of cardan couplings designed to suit various applications and requirements:

  • Single Universal Joint: This is the most common type of cardan coupling, consisting of two yokes connected by a cross-shaped center piece. It is suitable for applications where angular misalignment compensation is needed, but the shafts are not too far apart.
  • Double Cardan Joint: Also known as a double U-joint or CV joint, this type consists of two universal joints connected by an intermediate shaft. It is used when higher angles of misalignment need to be accommodated or when a constant velocity transmission is required.
  • Disc Type Coupling: This type uses flexible discs or plates to transmit torque and compensate for misalignment. It is often used in applications with limited space and moderate torque requirements.
  • Block Type Coupling: Block type cardan couplings use solid blocks or spheres to transmit torque. They are suitable for heavy-duty applications and can handle higher torque loads.
  • Floating Shaft Coupling: This design involves two shafts connected by a third floating shaft, which allows for even higher angles of misalignment and smoother torque transmission.
  • Needle Bearing Universal Joint: In this type, needle bearings are used to reduce friction and improve efficiency. It is often used in precision applications where low friction and high efficiency are crucial.

The choice of cardan coupling type depends on factors such as the amount of misalignment, torque requirements, available space, and the need for constant velocity transmission. Selecting the right type ensures optimal performance and longevity in various mechanical systems.

China Professional 19-32 Woodon China Encoder Couplings Cardan Universal Coupling Hot SWC-I120b-295, SWC-I100dh-304+30, SWC-I120b-295  China Professional 19-32 Woodon China Encoder Couplings Cardan Universal Coupling Hot SWC-I120b-295, SWC-I100dh-304+30, SWC-I120b-295
editor by CX 2024-05-08

China Standard SWC Series Cardan Shaft Universal Coupling with Flange Diameter 550mm for Rolling Mill

Product Description

SWC Series Cardan Shaft Universal Coupling With Flange Diameter 550mm For Rolling Mill

Brief Introduction

Why choose us!

                                                                                                                                                     
Quality Control                                                                                                                                                                                                

       
      

 

Product Description
 

structure Type A Flexible or Rigid Rigid Standard or Nonstandard Standard
Materia Alloy steel Brand name HangZhou XIHU (WEST LAKE) DIS. Place of origin ZheJiang ,China
Model SWC550A materials of yokes 35CrMo Length customization
Flange DIA 550mm Nominal torque 1000KN.m coating heavy duty industrial paint
Paint clour customization Application Industrial  machinery OEM/ODM Available
Certification ISO,TUV,SGS Price calculate according to model Custom service Available

Packaging & Delivery

Packaging details:Standard plywood case

Delivery detail: 15 -20 working days,depend on the actual produce condition

FAQ

Q: Are you trading company or manufacturer ?
A: We  are  a  professional  manufacturer specializing  in  manufacturing cardan  shafts. We supply cardan shafts for the wholesalers , dealers  and end-users from different countries. 
 
Q: Can you do OEM? And what is your min order ?
A: Yes, absolutely. Generally, min order is1 set.  Most of our products are Customized. Each order from our factory, we always produce cardan shaft after customer confirmed the drawing. So we didn’t have stock.
 
Q: How does your factory do regarding quality control?
A:Quality is priority! We always attach great importance to quality controlling from the very beginning to the  end:
1) Firstly, we have QC department to control the quality
2) Secondly, we have all detailed records for nonconformity products, then we will make summary according to these records, avoid it happen again.
3) Thirdly,In order to meet world-class quality standards strict requirements, we passed the SGS, TUV product certification.
4)Fourthly,Have first-class production equipment, including CNC Machines and machining center.

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

cardan coupling

Recent Technological Advancements in Cardan Coupling Design

In recent years, there have been notable advancements and innovations in the design of cardan couplings:

  • Material Enhancements: Advances in materials science have led to the development of high-strength and lightweight materials that can improve the performance and durability of cardan couplings.
  • Sealing Technology: Improved sealing mechanisms and materials help prevent contamination and enhance the lifespan of cardan couplings.
  • Computer-Aided Design (CAD): CAD software allows for more precise and optimized design of cardan couplings, leading to better performance and reduced stress concentrations.
  • Finite Element Analysis (FEA): FEA techniques enable engineers to simulate the behavior of cardan couplings under various loads and conditions, aiding in design optimization.
  • Lubrication Systems: Innovations in lubrication systems ensure efficient and consistent lubrication, reducing wear and enhancing coupling longevity.
  • Monitoring and Diagnostics: Integration of sensors and monitoring systems enables real-time data collection for performance analysis, predictive maintenance, and early detection of issues.
  • Customization: Advanced manufacturing techniques allow for more customization, making it possible to design cardan couplings tailored to specific applications.

These advancements contribute to the overall efficiency, reliability, and performance of cardan couplings, making them more suitable for a wide range of applications.

cardan coupling

Handling High Torque and Axial Displacement with Cardan Couplings

Cardan couplings, also known as universal joints or u-joints, are designed to transmit torque between two shafts that are not in a straight line. They are versatile components commonly used in various applications, including those requiring high torque and axial displacement.

Handling High Torque: Cardan couplings are capable of handling high levels of torque transmission due to their robust design and construction. The design allows for torque to be transmitted through a series of interconnected components, including the cross-shaped yokes and the bearing assemblies. The use of high-strength materials and precision manufacturing techniques contributes to the coupling’s ability to transmit torque efficiently.

Handling Axial Displacement: While cardan couplings are primarily designed for accommodating angular misalignment, they can also handle a certain degree of axial displacement. Axial displacement refers to the movement of the connected shafts along their axis. However, the axial displacement capacity of a cardan coupling is limited compared to its ability to handle angular misalignment.

It’s important to note that excessive torque or axial displacement beyond the coupling’s design limits can lead to premature wear, increased vibrations, and reduced performance. Manufacturers provide specifications and guidelines for the maximum torque and axial displacement that a specific cardan coupling can handle. Engineers and designers should adhere to these specifications to ensure optimal performance and longevity of the coupling in their applications.

cardan coupling

What is a cardan coupling and how is it used in mechanical systems?

A cardan coupling, also known as a universal joint or U-joint coupling, is a mechanical component used to transmit torque between two shafts that are not in alignment but intersect at an angle. It consists of a cross-shaped yoke with two perpendicular shafts connected at its ends, allowing the transmission of rotational motion even when the shafts are at different angles to each other. Cardan couplings are widely used in mechanical systems to transmit torque and motion where angular misalignment is present.

Here’s how a cardan coupling works and how it is used in mechanical systems:

  • Angular Misalignment: Cardan couplings are designed to accommodate angular misalignment between shafts. They can transmit torque between shafts that are at an angle to each other, typically up to 45 degrees. This ability to handle misalignment makes them suitable for various applications.
  • Components: A cardan coupling consists of a cross-shaped yoke with four arms, two of which are connected to the input and output shafts. The two remaining arms are connected to each other through a bearing, which allows for the rotational motion.
  • Transmitting Torque: As one shaft rotates, it imparts angular motion to the yoke. This angular motion is transferred to the other shaft through the bearing, allowing torque to be transmitted even when the shafts are not collinear.
  • Application: Cardan couplings are used in various applications, including automotive drivetrains, industrial machinery, agricultural equipment, and even in some aerospace systems. They are often found in places where it’s necessary to transmit torque between non-parallel shafts while allowing for some degree of flexibility.
  • Advantages: Cardan couplings are simple in design, relatively compact, and provide a cost-effective solution for transmitting torque in cases of angular misalignment. They are also capable of transmitting high torques while compensating for misalignment.
  • Limitations: Cardan couplings have limitations in terms of the angle they can handle, and at extreme angles, they may produce uneven torque output due to their design. They can also introduce some degree of vibration and require periodic maintenance.

In mechanical systems, cardan couplings are used in various applications where the alignment between shafts cannot be maintained, such as in vehicles with independent suspension systems, industrial machinery with non-parallel shafts, and applications where flexibility and torque transmission are required despite angular misalignment.

China Standard SWC Series Cardan Shaft Universal Coupling with Flange Diameter 550mm for Rolling Mill  China Standard SWC Series Cardan Shaft Universal Coupling with Flange Diameter 550mm for Rolling Mill
editor by CX 2024-05-07

China OEM SWC-Wd Universal Joint Coupling Shaft Cardan Shaft Coupling for Transportation Machinery

Product Description

SWC-WD Universal Joint Coupling Shaft Cardan Shaft Coupling for Transportation Machinery

Description:
SWC-WD-type cross shaft universal coupling is 1 of the most common coupling. With its characteristic structure enables not on the same axis or the axis angle greater or axial movement of a larger two-axis continuous constant angular velocity rotation, and reliably transmit torque and motion. Can be widely used in metallurgy, lifting, engineering, transportation, mining, oil, shipbuilding, coal, rubber, paper machinery and other heavy machinery industry, mechanical shafting transmitting torque.

Advantages:
1. The ability to have a large angle compensation.
2. The structure is compact and reasonable. SWC-WD type with integral fork, so carrying more reliable.
3. The carrying capacity. Compared with other types of the same diameter rotary joint axis, it delivers more torque, the turning diameter of restricted mechanical equipment, the complete range is more advantageous.
4. High transmission efficiency. Its transmission efficiency of 98-99.8% for high-power transmission, energy-saving effect.
5. carrying smooth, low noise, easy maintenance, assembly and disassembly.

Product parameters:

 

Packing & shipping:
1 Prevent from damage.
2. As customers’ requirements, in perfect condition.
3. Delivery : As per contract delivery on time
4. Shipping : As per client request. We can accept CIF, Door to Door etc. or client authorized agent we supply all the necessary assistant.

FAQ:
Q 1: Are you a trading company or a manufacturer?
A: We are a professional manufacturer specializing in manufacturing various series of couplings.

Q 2:Can you do OEM?
Yes, we can. We can do OEM & ODM for all the customers with customized artworks in PDF or AI format.

Q 3:How long is your delivery time?
Generally, it is 20-30 days if the goods are not in stock. It is according to quantity.

Q 4: How long is your warranty?
A: Our Warranty is 12 months under normal circumstances.

Q 5: Do you have inspection procedures for coupling?
A:100% self-inspection before packing.

Q 6: Can I have a visit to your factory before the order?
A: Sure, welcome to visit our factory. /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

cardan coupling

Maintenance Practices for Ensuring Cardan Coupling Reliability

To ensure the reliability of cardan couplings, the following maintenance practices are crucial:

  • Lubrication: Regularly inspect and maintain the lubrication system. Ensure proper lubricant levels and use lubricants recommended by the manufacturer.
  • Alignment: Maintain proper alignment between the input and output shafts. Misalignment can lead to premature wear and reduced efficiency.
  • Regular Inspections: Perform visual inspections to detect signs of wear, damage, or corrosion. Regular inspections can help identify issues before they become major problems.
  • Monitoring: Use sensors and monitoring systems to track the performance of the cardan coupling. Monitor temperature, vibration, and other parameters for anomalies.
  • Torque Analysis: Analyze the torque requirements of the machinery system to ensure that the cardan coupling can handle the load without exceeding its limits.
  • Periodic Maintenance: Follow the manufacturer’s recommended maintenance schedule. This may include replacing worn components, lubricant changes, and alignment adjustments.
  • Record Keeping: Maintain detailed maintenance records, including inspection dates, lubrication schedules, and any repairs performed.
  • Training: Ensure that maintenance personnel are trained to properly inspect, maintain, and troubleshoot cardan couplings.

By implementing these maintenance practices, operators can extend the lifespan of cardan couplings, prevent unexpected failures, and optimize the performance of machinery systems.

cardan coupling

Comparison of Cardan Couplings with Other Flexible Couplings

Cardan couplings, universal joints, and gear couplings are all types of flexible couplings used to transmit torque while accommodating misalignment. Here’s how a cardan coupling compares to other flexible coupling types:

1. Cardan Couplings:

– Also known as shaft couplings or u-joints.

– Typically consist of two yokes connected by a cross-shaped component called a spider.

– Accommodate angular misalignment.

– Limited to relatively lower speeds and torques.

– Provide moderate torsional flexibility.

2. Universal Joints:

– Consist of two yokes connected by cross-shaped pins and bearings.

– Accommodate angular misalignment similar to cardan couplings.

– Can transmit higher torques than cardan couplings.

– Limited in their ability to handle axial and parallel misalignment.

– Used in various applications, including automotive and industrial equipment.

3. Gear Couplings:

– Feature toothed gears that mesh to transmit torque.

– Accommodate angular, axial, and parallel misalignment.

– Suitable for high-speed and high-torque applications.

– Provide high torsional rigidity and accurate torque transmission.

– Require proper lubrication and maintenance.

When comparing these coupling types:

– Cardan couplings are simple and cost-effective solutions for moderate torque and speed applications with angular misalignment.

– Universal joints are versatile but may have limitations in handling higher torques and other misalignment types.

– Gear couplings offer superior torque and misalignment handling but are more complex and may require more maintenance.

The choice of coupling type depends on the specific application’s torque, speed, misalignment, and precision requirements.

cardan coupling

How do you properly install and maintain a cardan coupling in machinery?

Proper installation and maintenance of a cardan coupling are crucial to ensure its reliable performance and longevity:

  • Installation:
    • Align the shafts properly before connecting the coupling to minimize initial misalignment.
    • Ensure that the universal joints are in phase, meaning their yokes are in the same orientation to prevent uneven torque transmission.
    • Follow the manufacturer’s instructions for torque specifications while tightening bolts and fasteners to prevent overloading or loosening during operation.
    • Make sure the coupling is properly centered and balanced to avoid vibrations.
    • Check for any obstructions or interference that might affect the movement of the coupling.
  • Maintenance:
    • Regularly inspect the coupling for signs of wear, such as cracks, corrosion, or damaged components.
    • Monitor the alignment of the shafts to detect any misalignment that might occur over time.
    • Lubricate the universal joints and bearings as recommended by the manufacturer to reduce friction and wear.
    • Replace worn or damaged components promptly to prevent further deterioration and potential coupling failure.
    • Perform vibration analysis and balancing to ensure the coupling operates smoothly and doesn’t contribute to excessive vibrations in the machinery.
    • Regularly check for any signs of overheating, which might indicate inadequate lubrication or other issues.
    • Keep the coupling area clean from debris, dirt, and contaminants that could affect its performance.

By following proper installation procedures and conducting regular maintenance checks, you can maximize the efficiency and reliability of a cardan coupling in machinery.

China OEM SWC-Wd Universal Joint Coupling Shaft Cardan Shaft Coupling for Transportation Machinery  China OEM SWC-Wd Universal Joint Coupling Shaft Cardan Shaft Coupling for Transportation Machinery
editor by CX 2024-05-07

China Best Sales SWC-BH Universal Joint Coupling Shaft Cardan Shaft Coupling for Transportation Machinery

Product Description

SWC-BH Universal Joint Coupling Shaft Cardan Shaft Coupling for Transportation Machinery

Description:
The SWC universal joint coupling is a structure without bolts. The bearing is fixed without bolts. It avoids the weak links damaged by bolt shearing, prolongs the service life and is convenient for maintenance. It is suitable for rolling machinery, lifting and transportation machinery and other heavy machinery. It connects 2 transmission shafts with different axes, the rotation diameter is 100 to 620mm, the nominal torque is 1.25 to 1000kN m, and the axis angle is 15 to 25 degrees.

Advantages:
1. The ability to have a large angle compensation.

2. The structure is compact and reasonable. SWC-WD type with integral fork, so carrying more reliable.

3. The carrying capacity. Compared with other types of the same diameter rotary joint axis, it delivers more torque, the turning diameter of restricted mechanical equipment, the complete range is more advantageous.

4. High transmission efficiency. Its transmission efficiency of 98-99.8% for high-power transmission, energy-saving effect.

5. carrying smooth, low noise, easy maintenance, assembly and disassembly.

Packing & shipping
1 Prevent from damage.
2. As customers’ requirements, in perfect condition.
3. Delivery : As per contract delivery on time
4. Shipping : As per client request. We can accept CIF, Door to Door etc. or client authorized agent we supply all the necessary assistant.

FAQ:
Q 1: Are you a trading company or a manufacturer?
A: We are a professional manufacturer specializing in manufacturing various series of couplings.

Q 2:Can you do OEM?
Yes, we can. We can do OEM & ODM for all the customers with customized artworks in PDF or AI format.

Q 3:How long is your delivery time?
Generally, it is 20-30 days if the goods are not in stock. It is according to quantity.

Q 4: How long is your warranty?
A: Our Warranty is 12 months under normal circumstances.

Q 5: Do you have inspection procedures for coupling?
A:100% self-inspection before packing.

Q 6: Can I have a visit to your factory before the order?
A: Sure, welcome to visit our factory.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

cardan coupling

Signs of Wear or Damage in a Cardan Coupling and Detection Methods

Over time, cardan couplings can experience wear or damage that may impact their performance. Some common signs of wear or damage include:

  • Vibration: Excessive vibration during operation can indicate misalignment or worn components in the cardan coupling.
  • Noise: Unusual noises such as clunking, knocking, or rattling can indicate worn bearings or other components.
  • Increased Play: If there is noticeable play or backlash in the coupling, it may suggest worn or loose components.
  • Reduced Performance: A decrease in torque transmission or power transfer efficiency can indicate wear in the coupling.
  • Leakage: In the case of lubricated cardan couplings, leakage of lubricant may occur due to worn seals or damaged components.

To detect these signs of wear or damage, various methods can be employed:

  • Visual Inspection: Regularly inspect the coupling for any visible signs of wear, corrosion, or damage.
  • Vibration Analysis: Use vibration analysis tools to monitor vibration levels and detect any irregularities.
  • Noise Analysis: Listen for unusual noises during operation, which may indicate worn or misaligned components.
  • Torque Measurement: Monitor the torque transmitted through the coupling and compare it with expected values.
  • Play Measurement: Check for any play or backlash in the coupling by manually moving the shafts.
  • Lubricant Analysis: Analyze the condition of the lubricant for any contamination or signs of wear.

Regular maintenance and inspections are crucial for detecting and addressing wear or damage in cardan couplings before they lead to more severe issues or failures.

cardan coupling

Common Industries and Applications of Cardan Couplings

Cardan couplings, also known as universal joints or u-joints, are widely used in various industries and applications that require torque transmission and flexibility in shaft connections. Some common examples include:

  • Automotive Industry: Cardan couplings are used in driveshafts to transmit power from the engine to the wheels while allowing for variable angles and misalignment caused by suspension movement.
  • Industrial Machinery: They are used in heavy machinery such as mining equipment, cranes, and manufacturing machinery to transmit torque between non-aligned shafts.
  • Agricultural Machinery: Tractors and other agricultural equipment utilize cardan couplings in drivelines to accommodate varying angles and lengths.
  • Marine Applications: Cardan couplings are used in marine propulsion systems to transmit torque between the engine and the propeller shaft, even when the shafts are at different angles.
  • Aerospace Industry: They are employed in aerospace applications such as aircraft control systems and helicopter rotor drives to accommodate movements and misalignments.
  • Railway Systems: Cardan couplings are used in railway drivelines to transmit torque between cars and locomotives while allowing for movement and misalignment.
  • Energy Sector: They find applications in power generation systems, including wind turbines, where they accommodate misalignments caused by dynamic loads.
  • Pumps and Compressors: Cardan couplings are used in pumps and compressors to transmit power while compensating for misalignment and vibration.

These examples demonstrate the versatility of cardan couplings in various industries where torque transmission, flexibility, and angular misalignment compensation are essential.

cardan coupling

Factors to Consider When Selecting a Cardan Coupling for Specific Applications

Choosing the right cardan coupling for a specific application requires careful consideration of various factors:

  • Torque and Power Transmission: Determine the required torque and power capacity of the coupling to ensure it can handle the intended load without exceeding its limits.
  • Angular Misalignment: Assess the level of angular misalignment that might occur between the connected shafts and choose a coupling that can accommodate it without causing excessive wear or vibration.
  • Operating Speed: Consider the rotational speed of the shafts to ensure that the coupling’s design can handle the desired speed without causing issues like resonance or fatigue.
  • Environmental Conditions: Evaluate the operating environment, including factors like temperature, humidity, and exposure to contaminants, to select a coupling made from materials that can withstand these conditions.
  • Shaft Sizes and Types: Measure the diameter and type of shafts that need to be connected and choose a coupling with compatible dimensions and attachment methods.
  • Space Constraints: Consider the available space for the coupling within the machinery and select a compact design that fits without causing interference.
  • Maintenance Requirements: Evaluate the maintenance practices and frequency that will be feasible for your application and choose a coupling that aligns with those requirements.
  • Cost and Budget: Factor in the cost of the coupling and its potential impact on your budget while ensuring that the chosen coupling meets your performance needs.
  • Shock and Vibration: Determine if the application involves high levels of shock or vibration and select a coupling that can absorb or mitigate these forces to prevent premature failure.
  • Life Cycle and Reliability: Consider the expected lifespan of the machinery and choose a coupling that offers the desired level of durability and reliability.

By carefully considering these factors, you can select the most suitable cardan coupling for your specific application, ensuring optimal performance and longevity.

China Best Sales SWC-BH Universal Joint Coupling Shaft Cardan Shaft Coupling for Transportation Machinery  China Best Sales SWC-BH Universal Joint Coupling Shaft Cardan Shaft Coupling for Transportation Machinery
editor by CX 2024-05-06

China supplier Swp-B Welded Short Shaft Universal Coupling Cardan Shaft Cross Quick Coupling Universal Joint Coupling

Product Description

SWP-B Welded Short Shaft Universal Coupling Cardan Shaft

Description:
The SWP-B short flexible welded universal joint is a Universal joint designed to transmit power between 2 misaligned shafts. It is a flexible coupling, which means it can compensate for misalignment up to 25 degrees. The SWP-B short bend welded universal coupling is made of 35CrMo material and comes in various sizes to meet the needs of different applications. SWP-B short bend welded universal couplings are widely used in mechanical applications such as rolling mills, punches, straighteners, crushers, ship transmissions, papermaking equipment, ordinary machinery, water pump equipment, test benches, etc.

SWP-B short Flexible Welded Universal Coupling Features:
1. Possess the ability to compensate for large angles.
2. The structure is compact and reasonable. The SWP-B universal coupling is equipped with an integrated fork, making it more reliable in carrying capacity.
3. Carrying capacity. Compared to other types of rotating joint shafts with the same diameter, it provides more torque, limits the turning diameter of mechanical equipment, and has a wider range.
4. High transmission efficiency. Its transmission efficiency is 98-99.8%, suitable for high-power transmission and has energy-saving effect.
5. Smooth carrying, low noise, easy disassembly and maintenance.

Advantage:
1. Low life-cycle costs and long service life;
2. Increase productivity;
3. Professional and innovative solutions;
4. Reduce carbon dioxide emissions, and environmental protection;
5. High torque capacity even at large deflection angles;
6. Easy to move and run smoothly;

Model  
    D
   mm
 
Tn
KN·m
 
Tf
KN·m
 
β
 
S
mm
                                      mm
D1 D2 D3 E E1 b×h h1 L1 n-d
 
SWP160B
160 16 8 ≤10 50 140 95 114 15 4 20×12 6 85 6-13
 
SWP180B
180 20 10 ≤10 60 155 105 121 15 4 24×14 7 95 6-15
 
SWP200B
200 31.5 16 ≤10 70 175 125 127 17 5 28×16 8 110 8-15
 
SWP225B
225 40 20 ≤10 76 196 135 152 20 5 32×18 9 130 8-17
 
SWP250B
250 63 31.5 ≤10 80 218 150 168 25 5 40×25 12.5 135 8-19
 
SWP285B
285 90 45 ≤10 100 245 170 194 27 7 40×30 15 150 8-12
 
SWP315B
315 140 63 ≤10 110 280 185 219 32 7 40×30 15 170 10-23
 
SWP350B
350 180 90 ≤10 120 310 210 245 35 8 50×32 16 185 10-23
 
SWP390B
390 250 112 ≤10 120 345 235 273 40 8 70×36 18 205 10-25
 
SWP435B
435 355 160 ≤10 150 385 255 299 42 10 80×40 20 235 16-28
SWP480B 480 450 224 ≤10 170 425 275 351 47 12 90×45 22.5 265 16-31
 
SWP550B
550 710 315 ≤10 190 492 320 402 50 12 100×45 22.5 290 16-31
 
SWP660B
600 1000 500 ≤10 210 544 380 450 55 15 90×55 27.5 360 22-34
 
SWP640B
640 1250 630 ≤10 230 575 385 480 60 15 100×60 30 385 18-38

Packing & shipping:
1 Prevent from damage.
2. As customers’ requirements, in perfect condition.
3. Delivery : As per contract delivery on time
4. Shipping : As per client request. We can accept CIF, Door to Door etc. or client authorized agent we supply all the necessary assistant.
FAQ:
Q 1: Are you a trading company or a manufacturer?
A: We are a professional manufacturer specializing in manufacturing various series of couplings.

Q 2:Can you do OEM?
Yes, we can. We can do OEM & ODM for all the customers with customized artworks in PDF or AI format.

Q 3:How long is your delivery time?
Generally, it is 20-30 days if the goods are not in stock. It is according to quantity.

Q 4: How long is your warranty?
A: Our Warranty is 12 months under normal circumstances.

Q 5: Do you have inspection procedures for coupling?
A:100% self-inspection before packing.

Q 6: Can I have a visit to your factory before the order?
A: Sure, welcome to visit our factory.
  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

cardan coupling

Diagnosing and Troubleshooting Cardan Coupling Issues

Diagnosing and troubleshooting issues related to cardan couplings in machinery systems involves a systematic approach:

  1. Visual Inspection: Examine the cardan coupling for signs of wear, damage, misalignment, or corrosion. Look for any unusual noises or vibrations.
  2. Check Lubrication: Inspect the lubrication system and ensure proper lubricant levels. Inadequate lubrication can lead to premature wear.
  3. Monitor Performance: Use sensors and monitoring systems to track the performance of the cardan coupling in real-time. Analyze data for anomalies.
  4. Measure Alignment: Check for proper alignment between the input and output shafts. Misalignment can lead to increased wear and reduced efficiency.
  5. Check for Unusual Noises: Listen for any unusual noises during operation, such as grinding, squeaking, or knocking sounds.
  6. Inspect Components: Examine the individual components of the cardan coupling, including the universal joints and shafts, for signs of wear or damage.
  7. Perform Load Analysis: Evaluate the operating conditions and loads to ensure they are within the specified limits of the cardan coupling.
  8. Review Maintenance Records: Refer to maintenance records to ensure that the cardan coupling has been properly maintained and serviced.
  9. Consult Manufacturer Guidelines: Follow the manufacturer’s guidelines for troubleshooting and diagnostics specific to the cardan coupling model.

By following these steps, operators and maintenance personnel can effectively diagnose and troubleshoot cardan coupling issues, ensuring the reliable and efficient operation of machinery systems.

cardan coupling

Handling High Torque and Axial Displacement with Cardan Couplings

Cardan couplings, also known as universal joints or u-joints, are designed to transmit torque between two shafts that are not in a straight line. They are versatile components commonly used in various applications, including those requiring high torque and axial displacement.

Handling High Torque: Cardan couplings are capable of handling high levels of torque transmission due to their robust design and construction. The design allows for torque to be transmitted through a series of interconnected components, including the cross-shaped yokes and the bearing assemblies. The use of high-strength materials and precision manufacturing techniques contributes to the coupling’s ability to transmit torque efficiently.

Handling Axial Displacement: While cardan couplings are primarily designed for accommodating angular misalignment, they can also handle a certain degree of axial displacement. Axial displacement refers to the movement of the connected shafts along their axis. However, the axial displacement capacity of a cardan coupling is limited compared to its ability to handle angular misalignment.

It’s important to note that excessive torque or axial displacement beyond the coupling’s design limits can lead to premature wear, increased vibrations, and reduced performance. Manufacturers provide specifications and guidelines for the maximum torque and axial displacement that a specific cardan coupling can handle. Engineers and designers should adhere to these specifications to ensure optimal performance and longevity of the coupling in their applications.

cardan coupling

What are the key features and benefits of using a cardan coupling?

Cardan couplings, also known as universal joints or U-joints, offer several key features and benefits that make them valuable components in various mechanical systems:

  • Angular Misalignment Compensation: One of the primary features of cardan couplings is their ability to accommodate angular misalignment between shafts. This flexibility allows them to transmit torque even when the input and output shafts are not collinear.
  • Torque Transmission: Cardan couplings are effective in transmitting torque between shafts at an angle. They can handle both small and moderate torque loads, making them suitable for a wide range of applications.
  • Compact Design: The simple and compact design of cardan couplings makes them easy to integrate into various mechanical systems without requiring excessive space.
  • Cost-Effective Solution: Cardan couplings provide a cost-effective solution for transmitting torque in cases of angular misalignment. Their straightforward design and manufacturing process contribute to their affordability.
  • High-Speed Transmission: Cardan couplings can handle high rotational speeds, making them suitable for applications where rapid motion and torque transmission are required.
  • Versatility: These couplings find applications in diverse industries, including automotive, industrial machinery, agriculture, and aerospace, due to their ability to compensate for misalignment and transmit torque effectively.
  • Reduced Vibrations: In some cases, cardan couplings can help dampen vibrations and shocks that may occur due to misalignment, contributing to smoother operation.
  • Simple Maintenance: Maintenance of cardan couplings typically involves lubrication of the bearing and regular inspection for wear and tear. This maintenance process is relatively straightforward and can extend the component’s lifespan.
  • Easy Replacement: If a cardan coupling needs to be replaced due to wear or failure, its simple design makes the replacement process relatively quick and uncomplicated.

Overall, the key features and benefits of using cardan couplings make them an attractive choice for applications where torque transmission and angular misalignment compensation are necessary.

China supplier Swp-B Welded Short Shaft Universal Coupling Cardan Shaft Cross Quick Coupling Universal Joint Coupling  China supplier Swp-B Welded Short Shaft Universal Coupling Cardan Shaft Cross Quick Coupling Universal Joint Coupling
editor by CX 2024-05-06

China Good quality 19-32 Woodon China Encoder Couplings Cardan Universal Coupling Hot SWC-I120b-295, SWC-I100dh-304+30, SWC-I120b-295

Product Description

Product     Name Cardan Shaft
Product     Model SWC-I75A-335+40
Main          Material 35CrMo or 45# Steel
Nominal  Torque 500  N.M
Normal      Length 335 mm
Length       Compensation 40 mm

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

cardan coupling

Signs of Wear or Damage in a Cardan Coupling and Detection Methods

Over time, cardan couplings can experience wear or damage that may impact their performance. Some common signs of wear or damage include:

  • Vibration: Excessive vibration during operation can indicate misalignment or worn components in the cardan coupling.
  • Noise: Unusual noises such as clunking, knocking, or rattling can indicate worn bearings or other components.
  • Increased Play: If there is noticeable play or backlash in the coupling, it may suggest worn or loose components.
  • Reduced Performance: A decrease in torque transmission or power transfer efficiency can indicate wear in the coupling.
  • Leakage: In the case of lubricated cardan couplings, leakage of lubricant may occur due to worn seals or damaged components.

To detect these signs of wear or damage, various methods can be employed:

  • Visual Inspection: Regularly inspect the coupling for any visible signs of wear, corrosion, or damage.
  • Vibration Analysis: Use vibration analysis tools to monitor vibration levels and detect any irregularities.
  • Noise Analysis: Listen for unusual noises during operation, which may indicate worn or misaligned components.
  • Torque Measurement: Monitor the torque transmitted through the coupling and compare it with expected values.
  • Play Measurement: Check for any play or backlash in the coupling by manually moving the shafts.
  • Lubricant Analysis: Analyze the condition of the lubricant for any contamination or signs of wear.

Regular maintenance and inspections are crucial for detecting and addressing wear or damage in cardan couplings before they lead to more severe issues or failures.

cardan coupling

Common Industries and Applications of Cardan Couplings

Cardan couplings, also known as universal joints or u-joints, are widely used in various industries and applications that require torque transmission and flexibility in shaft connections. Some common examples include:

  • Automotive Industry: Cardan couplings are used in driveshafts to transmit power from the engine to the wheels while allowing for variable angles and misalignment caused by suspension movement.
  • Industrial Machinery: They are used in heavy machinery such as mining equipment, cranes, and manufacturing machinery to transmit torque between non-aligned shafts.
  • Agricultural Machinery: Tractors and other agricultural equipment utilize cardan couplings in drivelines to accommodate varying angles and lengths.
  • Marine Applications: Cardan couplings are used in marine propulsion systems to transmit torque between the engine and the propeller shaft, even when the shafts are at different angles.
  • Aerospace Industry: They are employed in aerospace applications such as aircraft control systems and helicopter rotor drives to accommodate movements and misalignments.
  • Railway Systems: Cardan couplings are used in railway drivelines to transmit torque between cars and locomotives while allowing for movement and misalignment.
  • Energy Sector: They find applications in power generation systems, including wind turbines, where they accommodate misalignments caused by dynamic loads.
  • Pumps and Compressors: Cardan couplings are used in pumps and compressors to transmit power while compensating for misalignment and vibration.

These examples demonstrate the versatility of cardan couplings in various industries where torque transmission, flexibility, and angular misalignment compensation are essential.

cardan coupling

Accommodation of Angular Misalignment in Shaft with Cardan Coupling

A cardan coupling, also known as a universal joint or u-joint, is designed to accommodate angular misalignment between two shafts while maintaining a constant velocity transfer. Here’s how it works:

The cardan coupling consists of two yokes or fork-like components, each attached to the end of a shaft. These yokes are connected by a cross-shaped central component called the cross or spider. The spider has bearings at its four ends that fit into grooves in the yokes.

When the connected shafts are misaligned at an angle, the spider allows the yokes to pivot around their respective shafts. This pivoting action of the yokes and the spider enables the coupling to transmit torque between the shafts even when they are not perfectly aligned. The spider’s bearings allow smooth rotation and transfer of power.

The design of the cardan coupling ensures that even during angular misalignment, the rotational speed remains consistent between the input and output shafts. However, it’s important to note that while cardan couplings can accommodate angular misalignment, they introduce a small amount of radial and axial movement, which can lead to fluctuating torque and vibration.

Cardan couplings are commonly used in applications where there is a need to transmit torque between shafts that are not in line, such as in drivetrains, vehicle suspensions, and industrial machinery.

China Good quality 19-32 Woodon China Encoder Couplings Cardan Universal Coupling Hot SWC-I120b-295, SWC-I100dh-304+30, SWC-I120b-295  China Good quality 19-32 Woodon China Encoder Couplings Cardan Universal Coupling Hot SWC-I120b-295, SWC-I100dh-304+30, SWC-I120b-295
editor by CX 2024-05-03

China Good quality High Quality SWC Industrial Flexible Steel Propeller Universal Joint Cardan Shaft Coupling

Product Description

High quality SWC industrial flexible steel propeller universal joint cardan shaft coupling

Description:
SWC-BH types Cardan shaft is a kind of the most commonly used with the characteristics of its structure can not in the same axis or axis angle or larger axial movement of 2 large equiangular continuous rotary speed, and reliably transfer torque and motion.
It can be widely used in paper machinery, metallurgy, lifting, transportation, mining, petroleum, shipbuilding, coal, rubber, and other heavy machinery industry machinery shaft in the transmission torque.

Structural Features:
1. With greater angle compensation capability, the axis angle of the swCtype can reach 15-25 degrees, and the Swp type can reach about 10 degrees
2. The structure is compact and reasonable, SWC type adopts integralforkhead, which makes the transportation more reliable.
3. Large carrying capacity. Compared with other types of couplings with thesame rotating diameter, the torque transmitted by it is greater, This is moreadvantageous for mechanical equipment with restricted rotating diameters.
4. High transmission efficiency. The transmission efficiency of 98-99.8% is usedfor high-power transmission, and the energy saving effect is obvious.
5. Stable transportation, low noise, easy assembly and disassembly and maintenance.

Product Parameters:

Packing & shipping:
1 Prevent from damage.
2. As customers’ requirements, in perfect condition.
3. Delivery : As per contract delivery on time
4. Shipping : As per client request. We can accept CIF, Door to Door etc. or client authorized agent we supply all the necessary assistant.

FAQ:
Q 1: Are you a trading company or a manufacturer?
A: We are a professional manufacturer specializing in manufacturing various series of couplings.

Q 2:Can you do OEM?
Yes, we can. We can do OEM & ODM for all the customers with customized artworks in PDF or AI format.

Q 3:How long is your delivery time?
Generally, it is 20-30 days if the goods are not in stock. It is according to quantity.

Q 4: How long is your warranty?
A: Our Warranty is 12 months under normal circumstances.

Q 5: Do you have inspection procedures for coupling?
A:100% self-inspection before packing.

Q 6: Can I have a visit to your factory before the order?
A: Sure, welcome to visit our factory.
  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

cardan coupling

Signs of Wear or Damage in a Cardan Coupling and Detection Methods

Over time, cardan couplings can experience wear or damage that may impact their performance. Some common signs of wear or damage include:

  • Vibration: Excessive vibration during operation can indicate misalignment or worn components in the cardan coupling.
  • Noise: Unusual noises such as clunking, knocking, or rattling can indicate worn bearings or other components.
  • Increased Play: If there is noticeable play or backlash in the coupling, it may suggest worn or loose components.
  • Reduced Performance: A decrease in torque transmission or power transfer efficiency can indicate wear in the coupling.
  • Leakage: In the case of lubricated cardan couplings, leakage of lubricant may occur due to worn seals or damaged components.

To detect these signs of wear or damage, various methods can be employed:

  • Visual Inspection: Regularly inspect the coupling for any visible signs of wear, corrosion, or damage.
  • Vibration Analysis: Use vibration analysis tools to monitor vibration levels and detect any irregularities.
  • Noise Analysis: Listen for unusual noises during operation, which may indicate worn or misaligned components.
  • Torque Measurement: Monitor the torque transmitted through the coupling and compare it with expected values.
  • Play Measurement: Check for any play or backlash in the coupling by manually moving the shafts.
  • Lubricant Analysis: Analyze the condition of the lubricant for any contamination or signs of wear.

Regular maintenance and inspections are crucial for detecting and addressing wear or damage in cardan couplings before they lead to more severe issues or failures.

cardan coupling

Handling High Torque and Axial Displacement with Cardan Couplings

Cardan couplings, also known as universal joints or u-joints, are designed to transmit torque between two shafts that are not in a straight line. They are versatile components commonly used in various applications, including those requiring high torque and axial displacement.

Handling High Torque: Cardan couplings are capable of handling high levels of torque transmission due to their robust design and construction. The design allows for torque to be transmitted through a series of interconnected components, including the cross-shaped yokes and the bearing assemblies. The use of high-strength materials and precision manufacturing techniques contributes to the coupling’s ability to transmit torque efficiently.

Handling Axial Displacement: While cardan couplings are primarily designed for accommodating angular misalignment, they can also handle a certain degree of axial displacement. Axial displacement refers to the movement of the connected shafts along their axis. However, the axial displacement capacity of a cardan coupling is limited compared to its ability to handle angular misalignment.

It’s important to note that excessive torque or axial displacement beyond the coupling’s design limits can lead to premature wear, increased vibrations, and reduced performance. Manufacturers provide specifications and guidelines for the maximum torque and axial displacement that a specific cardan coupling can handle. Engineers and designers should adhere to these specifications to ensure optimal performance and longevity of the coupling in their applications.

cardan coupling

What is a cardan coupling and how is it used in mechanical systems?

A cardan coupling, also known as a universal joint or U-joint coupling, is a mechanical component used to transmit torque between two shafts that are not in alignment but intersect at an angle. It consists of a cross-shaped yoke with two perpendicular shafts connected at its ends, allowing the transmission of rotational motion even when the shafts are at different angles to each other. Cardan couplings are widely used in mechanical systems to transmit torque and motion where angular misalignment is present.

Here’s how a cardan coupling works and how it is used in mechanical systems:

  • Angular Misalignment: Cardan couplings are designed to accommodate angular misalignment between shafts. They can transmit torque between shafts that are at an angle to each other, typically up to 45 degrees. This ability to handle misalignment makes them suitable for various applications.
  • Components: A cardan coupling consists of a cross-shaped yoke with four arms, two of which are connected to the input and output shafts. The two remaining arms are connected to each other through a bearing, which allows for the rotational motion.
  • Transmitting Torque: As one shaft rotates, it imparts angular motion to the yoke. This angular motion is transferred to the other shaft through the bearing, allowing torque to be transmitted even when the shafts are not collinear.
  • Application: Cardan couplings are used in various applications, including automotive drivetrains, industrial machinery, agricultural equipment, and even in some aerospace systems. They are often found in places where it’s necessary to transmit torque between non-parallel shafts while allowing for some degree of flexibility.
  • Advantages: Cardan couplings are simple in design, relatively compact, and provide a cost-effective solution for transmitting torque in cases of angular misalignment. They are also capable of transmitting high torques while compensating for misalignment.
  • Limitations: Cardan couplings have limitations in terms of the angle they can handle, and at extreme angles, they may produce uneven torque output due to their design. They can also introduce some degree of vibration and require periodic maintenance.

In mechanical systems, cardan couplings are used in various applications where the alignment between shafts cannot be maintained, such as in vehicles with independent suspension systems, industrial machinery with non-parallel shafts, and applications where flexibility and torque transmission are required despite angular misalignment.

China Good quality High Quality SWC Industrial Flexible Steel Propeller Universal Joint Cardan Shaft Coupling  China Good quality High Quality SWC Industrial Flexible Steel Propeller Universal Joint Cardan Shaft Coupling
editor by CX 2024-05-03

China Hot selling OEM Flexible Cardan Shaft Coupling

Product Description

                    Telescopic flange long cardan shaft Coupling(SWP-E)
Cardan shaft is widely used in rolling mill, punch, straightener, crusher, ship drive, paper making equipment, common machinery, water pump equipment, test bench, and other mechanical applications.

Advantage:
1. Low life-cycle costs and long service life;
2. Increase productivity;
3. Professional and innovative solutions;
4. Reduce carbon dioxide emissions, and environmental protection;
5. High torque capacity even at large deflection angles;
6. Easy to move and run smoothly;

 

Model  
    D
   mm
 
Tn
KN·m
 
Tf
KN·m
 
β
 
S
mm
                                      mm
D1 D2 D3 E E1 b×h h1 L1 n-d
 
SWP160E
160 16 8 ≤10 50 140 95 114 15 4 20×12 6 85 6-13
 
SWP180E
180 20 10 ≤10 60 155 105 121 15 4 24×14 7 95 6-15
 
SWP200E
200 31.5 16 ≤10 70 175 125 127 17 5 28×16 8 110 8-15
 
SWP225E
225 40 20 ≤10 76 196 135 152 20 5 32×18 9 130 8-17
 
SWP250E
250 63 31.5 ≤10 80 218 150 168 25 5 40×25 12.5 135 8-19
 
SWP285E
285 90 45 ≤10 100 245 170 194 27 7 40×30 15 150 8-12
 
SWP315E
315 140 63 ≤10 110 280 185 219 32 7 40×30 15 170 10-23
 
SWP350E
350 180 90 ≤10 120 310 210 245 35 8 50×32 16 185 10-23
 
SWP390E
390 250 112 ≤10 120 345 235 273 40 8 70×36 18 205 10-25
 
SWP435E
435 355 160 ≤10 150 385 255 299 42 10 80×40 20 235 16-28
SWP480E 480 450 224 ≤10 170 425 275 351 47 12 90×45 22.5 265 16-31
 
SWP550E
550 710 315 ≤10 190 492 320 402 50 12 100×45 22.5 290 16-31
 
SWP660E
600 1000 500 ≤10 210 544 380 450 55 15 90×55 27.5 360 22-34
 
SWP640E
640 1250 630 ≤10 230 575 385 480 60 15 100×60 30 385 18-38

Detailed Photos
 

Packaging & Shipping


Company Profile
 

HangZhou CHINAMFG Machinery Manufacturing Co., Ltd. is a high-tech enterprise specializing in the design and manufacture of various types of coupling. There are 86 employees in our company, including 2 senior engineers and no fewer than 20 mechanical design and manufacture, heat treatment, welding, and other professionals.

Advanced and reasonable process, complete detection means. Our company actively introduces foreign advanced technology and equipment, on the basis of the condition, we make full use of the advantage and do more research and innovation. Strict to high quality and operate strictly in accordance with the ISO9000 quality certification system standard mode.

Our company supplies different kinds of products. High quality and reasonable price. We stick to the principle of “quality first, service first, continuous improvement and innovation to meet the customers” for the management and “zero defect, zero complaints” as the quality objective. 

Our Services

1. Design Services
Our design team has experience in Cardan shafts relating to product design and development. If you have any needs for your new product or wish to make further improvements, we are here to offer our support.

2. Product Services
raw materials → Cutting → Forging →Rough machining →Shot blasting →Heat treatment →Testing →Fashioning →Cleaning→ Assembly→Packing→Shipping

3. Samples Procedure
We could develop the sample according to your requirement and amend the sample constantly to meet your need.

4. Research & Development
We usually research the new needs of the market and develop new models when there are new cars in the market.

5. Quality Control
Every step should be a particular test by Professional Staff according to the standard of ISO9001 and TS16949.

FAQ

Q 1: Are you a trading company or a manufacturer?
A: We are a professional manufacturer specializing in manufacturing
various series of couplings.

Q 2:Can you do OEM?
Yes, we can. We can do OEM & ODM for all customers with customized PDF or AI format artwork.

Q 3:How long is your delivery time?
Generally, it is 20-30 days if the goods are not in stock. It is according to quantity.

Q 4: Do you provide samples? Is it free or extra?
Yes, we could offer the sample but not for free. Actually, we have an excellent price principle, when you make the bulk order the cost of the sample will be deducted.

Q 5: How long is your warranty?
A: Our Warranty is 12 months under normal circumstances. 

Q 6: What is the MOQ?
A: Usually our MOQ is 1pcs.

Q 7: Do you have inspection procedures for coupling?
A:100% self-inspection before packing.

Q 8: Can I have a visit to your factory before the order? 
A: Sure, welcome to visit our factory.

Q 9: What’s your payment?
A:1) T/T. 

Contact Us

Web: huadingcoupling
Add: No.11 HangZhou Road,Chengnan park,HangZhou City,ZheJiang Province,China

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

cardan coupling

Diagnosing and Troubleshooting Cardan Coupling Issues

Diagnosing and troubleshooting issues related to cardan couplings in machinery systems involves a systematic approach:

  1. Visual Inspection: Examine the cardan coupling for signs of wear, damage, misalignment, or corrosion. Look for any unusual noises or vibrations.
  2. Check Lubrication: Inspect the lubrication system and ensure proper lubricant levels. Inadequate lubrication can lead to premature wear.
  3. Monitor Performance: Use sensors and monitoring systems to track the performance of the cardan coupling in real-time. Analyze data for anomalies.
  4. Measure Alignment: Check for proper alignment between the input and output shafts. Misalignment can lead to increased wear and reduced efficiency.
  5. Check for Unusual Noises: Listen for any unusual noises during operation, such as grinding, squeaking, or knocking sounds.
  6. Inspect Components: Examine the individual components of the cardan coupling, including the universal joints and shafts, for signs of wear or damage.
  7. Perform Load Analysis: Evaluate the operating conditions and loads to ensure they are within the specified limits of the cardan coupling.
  8. Review Maintenance Records: Refer to maintenance records to ensure that the cardan coupling has been properly maintained and serviced.
  9. Consult Manufacturer Guidelines: Follow the manufacturer’s guidelines for troubleshooting and diagnostics specific to the cardan coupling model.

By following these steps, operators and maintenance personnel can effectively diagnose and troubleshoot cardan coupling issues, ensuring the reliable and efficient operation of machinery systems.

cardan coupling

Materials Used in Manufacturing Cardan Couplings

Cardan couplings, also known as universal joints or u-joints, are crucial components in mechanical systems that transmit torque and accommodate angular misalignment. These couplings are manufactured using a variety of materials to ensure durability, reliability, and performance. Common materials used in the manufacturing of cardan couplings include:

1. Steel: Steel is a widely used material due to its high strength, durability, and resistance to wear and corrosion. Alloy steels are often chosen for their enhanced mechanical properties and fatigue resistance.

2. Cast Iron: Cast iron is used in some cardan couplings, especially in older or heavier-duty applications. It provides good strength and vibration dampening properties.

3. Aluminum: Aluminum is chosen for its lightweight properties, making it suitable for applications where weight reduction is important. It is commonly used in industries such as automotive and aerospace.

4. Stainless Steel: Stainless steel is used when corrosion resistance is a critical factor. It is commonly employed in environments where the coupling may be exposed to moisture or corrosive substances.

5. Bronze: Bronze can be used in certain applications where self-lubricating properties are desired. It also provides good wear resistance.

6. Synthetic Polymers: Some modern cardan couplings use synthetic polymers or plastics in their construction to reduce weight and provide specific performance characteristics, such as dampening vibrations.

The choice of material depends on factors like the application requirements, operational conditions, torque transmission, operating speed, and environmental factors. Manufacturers select materials that offer the best combination of strength, durability, wear resistance, and corrosion resistance for the specific use case of the cardan coupling.

cardan coupling

Accommodation of Angular Misalignment in Shaft with Cardan Coupling

A cardan coupling, also known as a universal joint or u-joint, is designed to accommodate angular misalignment between two shafts while maintaining a constant velocity transfer. Here’s how it works:

The cardan coupling consists of two yokes or fork-like components, each attached to the end of a shaft. These yokes are connected by a cross-shaped central component called the cross or spider. The spider has bearings at its four ends that fit into grooves in the yokes.

When the connected shafts are misaligned at an angle, the spider allows the yokes to pivot around their respective shafts. This pivoting action of the yokes and the spider enables the coupling to transmit torque between the shafts even when they are not perfectly aligned. The spider’s bearings allow smooth rotation and transfer of power.

The design of the cardan coupling ensures that even during angular misalignment, the rotational speed remains consistent between the input and output shafts. However, it’s important to note that while cardan couplings can accommodate angular misalignment, they introduce a small amount of radial and axial movement, which can lead to fluctuating torque and vibration.

Cardan couplings are commonly used in applications where there is a need to transmit torque between shafts that are not in line, such as in drivetrains, vehicle suspensions, and industrial machinery.

China Hot selling OEM Flexible Cardan Shaft Coupling  China Hot selling OEM Flexible Cardan Shaft Coupling
editor by CX 2024-05-02